首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2989篇
  免费   559篇
  国内免费   1153篇
  2024年   3篇
  2023年   126篇
  2022年   110篇
  2021年   153篇
  2020年   188篇
  2019年   231篇
  2018年   219篇
  2017年   189篇
  2016年   204篇
  2015年   151篇
  2014年   158篇
  2013年   263篇
  2012年   134篇
  2011年   170篇
  2010年   197篇
  2009年   171篇
  2008年   189篇
  2007年   193篇
  2006年   201篇
  2005年   167篇
  2004年   159篇
  2003年   143篇
  2002年   96篇
  2001年   104篇
  2000年   108篇
  1999年   91篇
  1998年   67篇
  1997年   48篇
  1996年   60篇
  1995年   44篇
  1994年   46篇
  1993年   30篇
  1992年   48篇
  1991年   21篇
  1990年   34篇
  1989年   41篇
  1988年   18篇
  1987年   19篇
  1986年   17篇
  1985年   18篇
  1984年   16篇
  1983年   3篇
  1982年   7篇
  1981年   7篇
  1980年   10篇
  1979年   3篇
  1978年   11篇
  1977年   6篇
  1976年   3篇
  1974年   3篇
排序方式: 共有4701条查询结果,搜索用时 453 毫秒
21.
Aim To document the occurrence of vertical displacements of vegetation in the high plateaus of the Venezuelan Guayana (tepuis) over the last c. 6000 years, and to discuss their significance for the origin of their flora, especially the endemism patterns observed in their flat summits. Two hypotheses have been proposed for the origin of the summit flora. One (the Lost World hypothesis) proposes a long history of evolution in isolation from the surrounding plains, while the other (the Vertical Displacement hypothesis) suggests that vertical movements of vegetation during the Pleistocene glacial‐interglacial cycles would have resulted in floristic mixing within the lowlands, and genetic interchange among plateau summits. Location This work has been conducted on the flat summit of the Churí‐tepui, in the Chimantá massif, at 5°15′ Lat. N and 62°01′ Long. W, around 2250 m altitude. Methods Pollen analysis and radiocarbon dating of two peat outcrops, using modern analogue technique and numerical methods for palaeoecological interpretation were used. Results The replacement of a high‐altitude plant community (a paramoid Chimantaea shrubland) by a lower elevation (< 2300 m) Stegolepis meadow, occurred about 2500 years before present (yr bp ). This vegetation change is inferred to have resulted from a regional climatic shift to higher temperature and moisture. A subsequent decrease in temperature and moisture led to the establishment of present conditions after about 1450 yr bp . Main conclusions The highland vegetation of the tepuis responded to climate shifts with vertical displacements, supporting the hypothesis of vertical mixing. However, a physiographical analysis shows that around half of the tepuis would never have been connected by lowlands. Therefore, both hypotheses are needed to explain the origins of the summit flora in the tepuis.  相似文献   
22.
Aims Rhododendron ponticum L. is reputed to be a post Plio‐Pleistocene relict plant species with a disjunct distribution that comprises the Iberian Peninsula to the west and the Euxinian region plus some restricted Mediterranean areas to the east. We analysed the ecological range (of subsp. baeticum) in the western area (Aljibe Mountains, north of the Strait of Gibraltar) to understand the factors determining the present area limitation. Location Sierra del Aljibe, north of the Strait of Gibraltar (Iberian Peninsula). Methods We selected 20 riparian sites where R. ponticum is common, and compiled data on the ecological diversity of associated woody species and ferns. We established a 500‐m main transect in each site, along the stream or river course, in which we placed five 20‐m‐long plots at regular intervals. We recorded physiographic habitat features, woody plants and fern abundance, and the number of R. ponticum individuals. Results Rhododendron ponticum in southern Spain is restricted to riparian forests in acidic soils (pH 4.0–6.4), and is mainly found on the banks of inclined and enclosed streams. In our inventory we recorded 59 woody taxa and 12 ferns, with R. ponticum being the dominant species of the understorey (mean abundance 78.6%). The communities are characterized by a high incidence of the humid warm temperate element, both in number of species (18.8 ± 3.7 per site) and abundance; meanwhile, the presence of the modern Mediterranean element (mean number of species 3.4 ± 3.8 per site) appears to be favoured by disturbance. These ecological–historical groups of taxa also show distinct patterns of typological habit, frequency of endemism, infrageneric diversity and geographical range. Populations of R. ponticum are characterized by a very variable density of seedlings in many sites, and the virtual lack of juveniles. Main conclusions Riparian forests of the Aljibe Mountains constitute a refuge for R. ponticum where the species persists, but populations appear to be in decline. The narrow ecological range of R. ponticum in the area strongly contrasts with its wide amplitude in the eastern natural area, mainly the Euxinian region, where R. ponticum probably finds better conditions due to the environmental heterogeneity of the region, and the lack of a hot dry season.  相似文献   
23.
The biogeochemistry of nitrogen in freshwater wetlands   总被引:19,自引:7,他引:12  
The biogeochemistry of N in freshwater wetlands is complicated by vegetation characteristics that range from annual herbs to perennial woodlands; by hydrologic characteristics that range from closed, precipitation-driven to tidal, riverine wetlands; and by the diversity of the nitrogen cycle itself. It is clear that sediments are the single largest pool of nitrogen in wetland ecosystems (100's to 1000's g N m-2) followed in rough order-of-magnitude decreases by plants and available inorganic nitrogen. Precipitation inputs (< 1–2 g N m-2 yr-1) are well known but other atmospheric inputs, e.g. dry deposition, are essentially unknown and could be as large or larger than wet deposition. Nitrogen fixation (acetylene reduction) is an important supplementary input in some wetlands (< < 1–3 g N m-2 yr-1) but is probably limited by the excess of fixed nitrogen usually present in wetland sediments.Plant uptake normally ranges from a few g N m-2 yr-1 to 35 g N m-2 yr-1 with extreme values of up to 100g N m-2 yr-1 Results of translocation experiments done to date may be misleading and may call for a reassessment of the magnitude of both plant uptake and leaching rates. Interactions between plant litter and decomposer microorganisms tend, over the short-term, to conserve nitrogen within the system in immobile forms. Later, decomposers release this nitrogen in forms and at rates that plants can efficiently reassimilate.The NO3 formed by nitrification (< 0.1 to 10 g N m-2 yr-1 has several fates which may tend to either conserve nitrogen (uptake and dissimilatory reduction to ammonium) or lead to its loss (denitrification). Both nitrification and denitrification operate at rates far below their potential and under proper conditions (e.g. draining or fluctuating water levels) may accelerate. However, virtually all estimates of denitrification rates in freshwater wetlands are based on measurements of potential denitrification, not actual denitrification and, as a consequence, the importance of denitrification in these ecosystems may have been greatly over estimated.In general, larger amounts of nitrogen cycle within freshwater wetlands than flow in or out. Except for closed, ombrotrophic systems this might seem an unusual characteristic for ecosystems that are dominated by the flux of water, however, two factors limit the opportunity for N loss. At any given time the fraction of nitrogen in wetlands that could be lost by hydrologic export is probably a small fraction of the potentially mineralizable nitrogen and is certainly a negligible fraction of the total nitrogen in the system. Second, in some cases freshwater wetlands may be hydrologically isolated so that the bulk of upland water flow may pass under (in the case of floating mats) or by (in the case of riparian systems) the biotically active components of the wetland. This may explain the rather limited range of N loading rates real wetlands can accept in comparison to, for example, percolation columns or engineered marshes.  相似文献   
24.
The plant and insect communities of early, secondary succession beginning with bare ground in an Old World site (southern Britain) and a New World site (Iowa, U.S.A.) shared a number of characteristics. Both sites showed similar temporal patterns of plant species cover and species richness, although overall richness was greater at the Old World site. Annuals dominated at both sites during the first year of succession and were largely replaced by perennials in the second year. Monocotyledons were more abundant at the Old World site, especially in the second year. The two sites differed markedly in the contribution of native and introduced plant species, with the Old World site dominated by natives and the New World site by alien plant species. Insect herbivore load was greater at the Old World site, when expressed in terms of structural complexity of the vegetation, suggesting that there may be major differences in the influence of herbivores on the direction and rate of succession at the two sites.  相似文献   
25.
Summary During five different periods between Nov. 1982 and Aug. 1983, the diurnal patterns exhibited in photosynthetic CO2 uptake and stomatal conductance were observed under natural conditions on twigs of Cistus salvifolius, a Mediterranean semi-deciduous shrub which retains a significant proportion of its leaves through the summer drought. During the same periods, net photosynthesis at saturating CO2 partial pressure was measured on the same twigs as a function of irradiance at different temperatures. From these data, photosynthetic capacity, defined here as the CO2- and light-saturated net photosynthesis rate, was obtained as a function of leaf temperature. C. salvifolius is a winter growing species, shoot growth being initiated in Nov. and continuing through May. Photosynthetic capacity was quite high in Nov., March and June, exceeding 40 mol m-2 s-1 at optimum temperature. In Dec., photosynthetic capacity was somewhat reduced, perhaps due to low night-time temperatures (<5°C) during the measurement period. In Aug., capacity in oversummering shoots at optimum temperature fell to less than 8 mol m-2 s-1, due to water trees and perhaps leaf aging. Seasonal changes in maximal photosynthetic rates under ambient conditions were similar, and like those found in co-occurring evergreen sclerophylls. Like the evergreens, Cistus demonstrated considerable stomatal control of transpirational water loss, particularly in oversummering leaves. During each measurement period except Aug. when capacity was quite low, the maximum rates of net photosynthesis measured under ambient conditions were less than half the measured photosynthetic capacities at comparable temperatures, suggesting an apparent excess nitrogen investment in the photosynthetic apparatus.  相似文献   
26.
Electron probe microanalysis of transverse sections was used to provide semiquantitative estimates of Al and other cations in the leaf tissues of some Al-accumulating plants of the cerrado vegetation of central Brazil. Concentrations of Al were generally higher than those of other cations in the phloem elements of these plants growing on dystrophic as well as fertile acid soils. When one of the Al-accumulating species,Vochysia thyrsoidea, was grown in a calcareous soil, the concentration of Al in the phloem elements of leaves was lower than that of Ca and K though the cotyledons showed higher concentrations of Al than those of other cations.  相似文献   
27.
28.
The Forsmark Biotest Basin is a shallow coastal ecosystem that receives brackish cooling-water discharge from a nuclear power plant. The effects of the discharge on epilithic algal communities were investigated by analysing samples taken every third week throughout one year at 11 sites differentially affected by temperature and/or flow rate enhancement. Community variation was summarized in a canonical correspondence analysis (CCA) of species abundances as a function of site and date. The temperature increase favoured blue-green algae at the expense of red and brown algae. Blue-green algae were however abundant in summer in stagnant water, whether heated or not, and some red and brown algae became abundant in winter in heated sites with flowing water. Green algae and diatoms increased in biomass in the heated sites, but not in relative cover-abundance. The absence of ice and snow cover at sites with heated and/or flowing water caused autumn species to persist into winter, because of the higher light intensity (compared with natural conditions) and the absence of the mechanical abrasion by ice. The thermal discharge lowered species diversity (Shannon-Weaver index) both in summer and winter at sites with flowing water, but not at sites with quiescent or stagnant water. CCA showed alternate periods of stability and rapid change within the seasonal cycle. Individual species were placed according to their optimum; red and brown algae in winter/spring, green algae in spring/summer, blue-green algae in summer, and diatoms at various times. Exceptions to this pattern were species endo- or epiphytic on species of a different group. Analysis of the effects of temperature, flow rate and ice cover on the seasonal pattern of particular species showed that different species respond in individualistic ways to different combinations of these environmental variables.  相似文献   
29.
Vegetation growing in the Ely mining district of White Pine County, NV has been analyzed for tellurium to discover whether Te accumulator plants existed similar to those that take up Se in great quantities. In addition, the variation in Te content among species growing in different geological settings was studied. Another objective of this study was to determine the range of Te concentration in vegetation in regions where the Te content of surface materials was high, as in the Ely mining district, and low as in various areas of western CO. Trees and shrubs (480 samples) as well as flowering plants (505 samples) and their associated edaphic materials were collected from six sites in the Ely region and all plant parts were analyzed for Te, Se, Fe, S, Zn, Cu, and Pb. One hundred and five plants were collected from three areas in western CO. There is a highly significant difference between Te uptake by trees and that of perennial flowering plants. Flowers contain significantly more Te on the average than other plant parts. An examination of the Te content of tree parts reveals that leaves sorb the most and branches the least. When the Te content of edaphic materials is high, there is a corresponding increase in the Te content of plants. Shallow perennial plants were not found growing in areas where soils contained more than 10 mg kg−1 Te. Seleniferous species ofAstragalus contain larger quantities of Te than plants in the Ely area, whereas nonseleniferous members of this genus contain much less. The nitrotoxin producing Astragali contain concentrations of Te greater than that encountered in nonseleniferous species but less than that in seleniferous ones. No plants contained more than 1 mg kg−1 Te. Iron, Te, Se, and S are coherent in all plants and in most soils and rocks examined.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号